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1. INTRODUCTION
In modern processors, power consumption and heat dissipa-
tion are key challenges, especially for battery-limited mobile
platforms. Heterogeneous multicore systems are an effec-
tive way to trade increased area for improved energy effi-
ciency. These systems consist of multiple cores with differ-
ing performance and energy characteristics[1]. Applications
are mapped to the most energy-efficient cores that meet the
performance requirements.

For these systems, application migration at a finer gran-
ularity can help expose more opportunities to improve en-
ergy efficiency. However, traditional systems with private
L1 caches must explicitly migrate the L1 cache state when
switching, incurring high overhead and limiting the switch-
ing to a coarse granularity. To reduce this migration over-
head, the Composite Core[2] is proposed. By sharing much
of the architectural states between heterogeneous pipelines
(µEngines) within a single core, it reduces the migration
overhead to near zero, allowing a single thread to switch be-
tween the µEngines at a fine granularity (on the order of a
thousand instructions). In addition, Composite Cores can
be augmented to support multithreaded execution.

When multiple threads are running simultaneously on a
multicore system, they will compete with each other for
shared resources. For example, in the case of shared caches,
both threads are competing for the cache capacity, which
may degrade overall performance.

Previous works (e.g., Vantage[3], UCP[4], PriSM[5]) have
extensively studied cache partitioning mechanisms on L2 or
lower levels of caches to help resolve the cache contention
issue. However, in a Composite Core or SMT cores, threads
share even latency critical L1 caches. On mobile platforms,
if a foreground process and a background process (regarded
as the primary and secondary threads, respectively) are run-
ning on a Composite Core, the foreground process may suf-
fer from a performance loss (e.g., more than 5%) due to
the cache contention with the background process on the L1
level.

We find that both the memory characteristics of the ap-
plication phases and the microarchitecture of the µEngine
the application is running on impact cache allocation at the
L1 level. Therefore, this paper introduces an adaptive cache
management scheme that focuses on the shared L1 caches
for a Composite Core. This scheme is designed to limit
the performance impact on the primary thread from a sec-
ondary thread due to cache contention. It employs way-
partitioning and a modified LRU policy that overcomes lim-
itations exclusive to L1 caches. Since threads can switch
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Figure 1: Structure of Composite Core[2]

between µEngines at a fine granularity, the scheme must
also be enabled to dynamically resize cache capacities at
that granularity to capture changing cache demands.

2. BACKGROUND AND MOTIVATION
A Composite Core[2] is composed of an out-of-order pipeline
(Big µEngine) and a in-order pipeline (Little µEngine) that
share L1 caches as shown in Figure 1. The Big µEngine
has higher performance but higher power consumption com-
pared with the Little µEngine. The two µEngines share
the front-end and the same L1 instruction and data caches,
which dramatically reduces switching overheads.

In an augmented Composite Core supporting multithreaded
execution, one thread is mapped to each µEngine. The con-
troller exchanges threads between µEngines if it predicts this
will yield improved energy efficiency gains.

With multiple threads running simultaneously on a Com-
posite Core, cache partitioning is essential to maximizing
system performance. Memory intensive threads can occupy
most of the cache capacity, starving other threads through
limited cache space. In the extreme case, threads thrash
each other as they contend for overlapped cache space. There-
fore, several cache partitioning mechanisms have been pro-
posed to manage cache resources across processes.

There are two general methods to implement cache parti-
tioning: controlling cache line placement (indexing mecha-
nisms) or replacement (replacement-based mechanisms). In-
dexing mechanisms resize cache capacities by directly repo-
sitioning cache lines to the cache space assigned to corre-
sponding threads, which incurs high migration overhead and
makes smooth resizing difficult[6]. Here resizing means re-
deciding the percent of total cache capacity assigned to each
thread. By contrast, replacement-based mechanisms resize
cache capacities only by controlling the cache line replace-
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Figure 2: Performance of the primary thread

ment policy and therefore have lower resizing penalty.
Existing cache partitioning mechanisms focus on parti-

tioning of L2 or last level caches (LLCs). However, for a
Composite Core style architecture, the performances of both
threads, especially the primary thread, can suffer from cache
contention in L1 caches.

Figure 2 shows the performance loss of the primary thread
caused by the L1 data cache contention. Every bar is la-
beled by the used benchmarks in which the former is the
primary thread and the latter is the secondary thread, e.g.,
astar-astar*. Benchmarks marked with an asterisk use dif-
ferent inputs. The baseline is the performance of the pri-
mary thread when the L1 data cache can only be accessed
by the primary thread. It shows that in more than half the
cases, the primary thread has a performance loss of more
than 5%. The performance loss can be 28% in the worst
case and is 10% on average.

A naive solution to prevent the performance loss of the pri-
mary thread is assigning the L1 data cache exclusively to the
primary thread as the baseline does in Figure 2. However,
this strategy will dramatically decrease the total throughput
and the performance of the secondary thread. Therefore, a
cache partitioning scheme in the L1 caches becomes neces-
sary to maximize the total throughput or the performance
of the secondary thread while limiting the performance loss
of the primary thread to be lower than 5%.

Ideally, cache partitioning can significantly reduce the cache
contention that results from the overlap of working sets.
However, the L1 cache size is usually smaller than the work-
ing set of either thread. Thus compared with working sets
overlapping, the relations between memory sets accessed by
threads in fine-grained instruction phases have more tight
correlation with the cache contention penalty. Therefore,
L1 cache partitioning mechanisms should focus more on fine-
grained memory sets of different threads. Additionally, for
a Composite Core, microarchitecture performance asymme-
try further complicates the challenge of minimizing cache
contention.

3. L1 CACHE PARTITIONING
To address these difficulties, we propose an adaptive way-
partitioning scheme for the L1 cache which works at the
fine granularity needed by thread switching on a Composite
Core.

The main challenge specific to L1 caches is hit latency.
As L1 caches interface directly with the processor, their hit
latency must not exceed one (or possibly two) cycles. There-

fore, it is difficult for the L1 caches to achieve an associativ-
ity higher than four. Complex way-hashing functions cannot
be employed due to latency limitations. Besides, the latency
limits the sizes of L1 caches to be smaller than application
working sets for both instruction and data caches. Finally,
most existing cache partitioning schemes do not provide a
limitation on the performance loss of the primary thread.
For these reasons, many existing cache partitioning algo-
rithms are not well suited for L1 caches.

3.1 Heterogeneous Memory Accesses
As threads with different performance characteristics exe-
cute on different µEngines of a Composite Core, there is an
inherent performance asymmetry.

For L1 caches, the inherent heterogeneity of Composite
Cores should be taken into consideration. When running
on the Big µEngine, a thread tends to generate more cache
accesses due to increased issue width and advanced hard-
ware structures. Contrarily, a thread running on the Little
µEngine is constrained to issue memory access much slower.
An L1 cache partitioning scheme must account for these het-
erogeneous memory access patterns, along with data-reuse
rates and memory set sizes.

3.2 L1 Cache Way-Partitioning
Limitations on L1 caches require a cache partitioning mecha-
nism with low accessing and resizing overheads. To smoothly
resize the cache capacity, a way-partitioning algorithm based
on an augmented cache replacement policy can be a suitable
choice for L1 cache partitioning.

In our design, two threads are running simultaneously on
the Composite Core. Each way of the L1 caches can be ei-
ther assigned exclusively to thread 0, exclusively to thread
1, or shared by both threads. If all 4 ways are shared by
both threads, the cache is identical to a traditional non-
partitioning L1 Cache. In the situation that all ways are
assigned to a single thread, the other thread must bypass
the L1 caches to directly access data in the L2 cache.

Our way-partitioning scheme is based on an augmented
Least Recently Used (LRU) policy. There is no data mi-
grated when resizing the cache capacity for each thread.
After resizing, all the cache blocks in the ways assigned to
another thread are still kept in the same position. When the
Composite Core accesses the cache, all 4 ways are searched
to locate the data, similar to the non-partitioning cache.
Therefore, the way-partitioning algorithm does not intro-
duce extra overhead for hit latency. However, on a miss,
when the cache must find a victim, the partitioning con-
troller will only select a LRU block located in a way that
is either assigned to that thread or shared by both threads.
By doing this, it protects the data in the ways assigned to
a specific thread from evictions by the other thread.

3.3 Adaptive Scheme
To capture changes of cache access behavior across instruc-
tion phases, our scheme can resize the cache capacity for
each thread at a fine granularity (on the order of 10K to
100K instructions) during execution.

After one instruction phase finishes, the partitioning con-
troller will re-evaluate which ways to assign exclusively to
thread 0, thread 1, or to share between threads based on
some characteristics of threads. These characteristics in-
clude cache reuse rates, memory set sizes and which µEngine



Metrics
Little

HrHs HrLs LrHs LrLs

B
ig

HrHs (↑,↓) (↑,↓) (↑,↓) (↑,↓)

HrLs (=,↑) (=,=) (=,↓) (=,↓)

LrHs (↓,↑) (↓,=) (↓,↓) (↑,↓)

LrLs (↓,↑) (=,↑) (=,↓) (↓,↓)

Table 1: Cache Partitioning Priority based on cache ac-

cess metrics (Hr/Lr: High/Low cache reuse rates; Hs/Ls:

High/Low size of the memory set). The arrows in the tu-

ples (e.g., (↑,↓)) represent the priorities of threads on the

Big and Little µEngines, respectively. ”↑”: raise priority;

”↓”: lower priority; ”=”: maintain priority.

the thread is running on. We use cache partitioning priority
to describe the priority of one thread when resizing the cache
capacities. Ways belonging to the thread with a low priority
may become shared or be assigned to the other thread if it
has a higher priority.

Table 1 shows the cache partitioning priorities varying
with different characteristics. Note that in this paper, thread
switching is disabled for simplicity and the primary thread
will always execute on the Big µEngine. As shown in this
table, threads that need more private cache resources tend
to have higher priorities. For example, when the primary
thread running on the Big µEngine has a high cache reuse
rate and a small memory set, it is likely to be compute in-
tensive. Therefore, when the secondary thread on the Little
µEngine has a high cache reuse rate and a large memory set,
the partitioning controller may decide to maintain the same
cache ways for the primary thread and assign more cache
ways to the secondary thread. However, if two threads both
have a high cache reuse rate and a large memory set, the
primary thread should get a higher priority due to the in-
herent heterogeneity of the Composite Core. Actually, the
primary thread always tend to have a higher priority than
the secondary thread, which can also help prevent the pri-
mary from a significant performance loss.

Besides the priorities of threads, the adaptive scheme must
take the performance loss of the primary thread into consid-
eration. It should limit the performance loss of the primary
thread to at most 5%. Every resizing decision based on Ta-
ble 1 is made under this performance loss limitation. Any
cache partitioning modes that predicted to cause a signif-
icant performance loss in the primary thread will not be
adopted.

4. RESULTS AND ANALYSIS
4.1 Experimental Methodology
To evaluate the adaptive cache partitioning scheme, the
Gem5 Simulator[7] is extended for fine-grained resizing of
cache capacities. Benchmarks studied are selected from the
SPEC CPU2006 suite. Two benchmarks are combined to
form a single multiprogrammed workload. Each workload is
named as Benchmark1-Benchmark2 in which Benchmark1 is
the primary benchmark and Benchmark2 is the secondary
one. Benchmarks marked with an asterisk use different in-
puts. All benchmarks are compiled using gcc with -O2 op-
timizations for the ARM ISA. All workloads are evaluated
with a fast forwarding for 1.5 billion cycles before beginning

Architecture
Features

Parameters

Big µEngine

3 wide Out-of-Order @ 1.0 GHz
12 stage pipeline
92 ROB entries
144 entry register file
Tournament branch predictor (Shared)

Little µEngine

2 wide In-Order @ 1.0 GHz
8 stage pipeline
32 entry register file
Tournament branch predictor (Shared)

Memory System

32KB 4-way L1 I-Cache (Shared)
64KB 4-way L1 D-Cache (Partitioning)
1MB L2 Cache, 18 cycle access
4096MB Main Mem, 80 cycles access

Table 2: Experimental Hardware Parameters

detailed simulations for 100 million instructions.
Table 2 gives more specific simulation configurations for

the Composite Core and the memory system. The Big and
Little µEngines are models as a 3-wide out-of-order pipeline
and a 2-wide in-order pipeline, respectively. The adaptive
cache partitioning scheme is implemented in the data cache
while the instruction cache is directly shared between the
two threads. Thread switching between the Big and the
Little µEngine is disabled for simplicity.

Cache capacities are resized for every fix-length instruc-
tion phase. For different instruction phases, the cache par-
titioning scheme can switch between six different modes. In
mode 0, all cache ways are shared between two threads. In
mode 1, 2, 3 and 4, the partitioning controller assign one,
two and three ways exclusive to the primary thread, respec-
tively. Remaining cache ways, if any, are assigned exclu-
sively to the secondary thread. In mode 5, two ways are
shared by the two threads and two ways left are assigned
exclusively to the primary and secondary threads, one per
thread.

In this paper, the simulation is configured in an oracle
way. For the oracle simulation, every instruction phase runs
under all possible cache partitioning modes and the mode
that maximizes the total throughput is chosen. Therefore,
this oracle simulation actually finds the local optimal cache
partitioning mode for every specific instruction phase but
not the global optimal one for the entire simulation.

The length of the instruction phases is set to 100K instruc-
tions from the primary thread. Shorter instruction phase
cannot capture the long-term impact of every cache parti-
tioning mode and may lead to a decrease in total throughput.
Therefore, taking history performance information into con-
sideration when resizing the cache capacities can help learn
more about the long-term impacts and may decrease the op-
timal length of the instruction phases.

To prevent the primary thread from losing much perfor-
mance, the scheme keeps a performance limitation on the
cache capacities resizing. The workloads are first executed
with all the cache ways assigned to the primary thread.
The performance of the primary thread in every workload
is recorded as the baseline. In the simulation with adap-
tive cache partitioning scheme, the chosen cache partition-
ing mode for every instruction phase should not decrease
the total throughput to be lower than 95% of the baseline
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Figure 3: Primary thread performance of No
Performance Loss(NPL), Unbounded Performance
Loss(UPL), Bounded Performance Loss(BPL)
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Figure 4: Total throughput of NPL, UPL, BPL

performance. Therefore, the scheme actually maximizes the
entire throughput under a 95% performance limitation on
the primary thread.

4.2 Results for Adaptive Cache Partitioning
Figure 3 compares the primary thread performance losses
of No Performance Loss (NPL), Unbounded Performance
Loss (UPL) and Bounded Performance Loss (BPL). In the
case of NPL, all L1 data cache ways are assigned exclusively
to the primary thread. All normalization in this paper is
with respect to corresponding performance characteristics of
NPL. For UPL, the L1 data cache is directly shared between
two threads. BPL employs the adaptive cache partitioning
scheme in the data cache. Compared with UPL, the adap-
tive scheme limits the primary thread performance losses of
all the workloads to be lower than 5% and decrease the ge-
ometric mean performance loss to 3.3%.

The total throughputs of NPL, UPL and BPL are shown
in Figure 4. Because the adaptive cache partitioning scheme
in BPL should consider the primary thread performance lim-
itation, it cannot utilize all the opportunities to maximize
the total throughput and therefore leads to a loss on the
entire performance. On average, the normalized throughput
decreases from 1.31 to 1.24 with the adaptive cache parti-
tioning scheme employed instead of directly sharing the data
cache.

For some workloads, the primary thread performances al-
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Figure 5: Primary thread performance of NPL, UPL
(Sampling), BPL (Adaptive)
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Figure 6: Total throughput of NPL, UPL (Sam-
pling), BPL (Adaptive)

most do not decrease in BPL for two different reasons. The
first reason is that there is no opportunity for cache sharing
in most instruction phases. Directly sharing the data cache
or assigning cache ways exclusively to the secondary thread
will dramatically decrease the primary thread performance.
For example, for the workload xalancbmk-gcc, the perfor-
mance of xalancbmk is decreased by 18% in UPL, which
illustrates that sharing data cache may leads to a significant
performance loss for xalancbmk. Therefore, xalancbmk has
no performance loss in BPL due to the first reason. The
second reason is that the two benchmarks in the same work-
load do not have much cache contention with each other
(e.g., libquantum-sjeng). In this case, the primary thread
performance will not decrease with the data cache shared
and the adaptive cache partitioning scheme actually has no
impact on the performances of both threads.

4.3 Adaptive and Sampling Cache Partition-
ing Schemes

In addition to the adaptive cache partitioning scheme, an
sampling scheme is also discussed in this paper.

The sampling cache partitioning scheme selects the cache
partitioning modes for every instruction phase by briefly
sampling the performance with different modes. For ev-
ery instruction phase with 10 million instructions from the
primary thread, the scheme executes the first 100K instruc-



4000 6000 8000 10000 12000
Cycle +1e8

0

64

128

192

256
Se

t I
nd

ex
 in

 D
at

a 
Ca

ch
e

Primary Thread Secondary Thread

Figure 7: Sample Case of gcc-gcc

tions under all the cache partitioning modes including di-
rectly sharing the data cache. The mode that maximizes
the total throughput of the sampling phase is then adopted
for the entire instruction phase.

Figure 5 and Figure 6 show the primary thread perfor-
mances and total throughputs of the sampling scheme. Be-
cause the sampling scheme actually adds no performance
loss limitation on the primary thread, it is labeled as UPL
(Sampling) in those figures. The results for the sampling
scheme are similar to that with a directly shared data cache.
Although it has a higher overall throughput, the sampling
scheme still suffers from the performance loss of the primary
thread.

4.4 Case Analysis
In this section, we give some example cases to explain in
what situations our adaptive cache partitioning scheme works.

Figure 7 and Figure 8 plot the L1 data cache accesses of
the primary and secondary threads in a single short time
slot. The y axis is the set index of every data cache access
instead of the memory address.

Figure 7 shows the cache accesses with workload gcc*-
gcc*. The cache space accessed by the two benchmarks
overlap substantially, which means there is severe cache con-
tention between the primary and the secondary threads.
Therefore, cache partitioning can help decrease the cache
contention and improve the total throughput. Especially,
the primary thread can avoid a significant performance loss
with the protection given by our adaptive scheme. Two
benchmarks both have a small memory set but a high cache
reuse rate. Base on Table 1, the priorities of the two bench-
marks are maintained. However, considering the limitation
on the primary thread performance loss, the primary actu-
ally get all the cache ways in the data cache in this time
slot.

The cache accesses of workload libquantum-libquantum
are plotted in Figure 8. Both benchmarks have a similar
cache access behavior which consists of two different access
patterns. The first pattern keeps accessing the next cache
block while the second one repeatedly accesses the same
block. For the first pattern, the cache line loaded will not
be reused in the near future and do not need to be saved
in the data cache. Only the cache line that is repeatedly
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Figure 8: Sample Case of libquantum-libquantum

accessed in the second pattern should be saved and will be
reused. Therefore, both benchmarks have a large memory
set and a low cache reuse rate. As shown in Table 1, the
priorities of both threads will decrease and the cache ways
assigned exclusively to them may become directly shared.
In real simulation, as predicted, the entire data cache is di-
rectly shared between the primary and secondary threads in
this execution phase.

5. CONCLUSION
Traditional cache partitioning mechanisms focus on the last
level cache and all threads are handled equivalently. How-
ever, in tightly-coupled architectures like Composite Cores,
heterogeneous cores share resources up to the L1 caches,
causing performance to suffer from L1-level cache contention.
Moreover, two threads within a Composite Core should be
considered differently due to the inherent heterogeneity. The
primary thread should be protected from a significant per-
formance loss.

This paper proposes an adaptive cache partitioning scheme
for L1-level caches of a Composite Core. Cache capacities
are dynamically resized every fixed-length instruction phase
based on the memory set size and the cache reuse rate. Con-
sidering the inside heterogeneity, the primary thread tend to
have a higher priority compared with the secondary thread.
This scheme also provides a 5% limitation on the perfor-
mance loss of the primary thread for performance protec-
tion.

Experiments in this paper are configured in an oracle way
and only local performance information is used for cache
capacities resizing. However, with history performance in-
formation taken into consideration for the adaptive cache
partitioning scheme, the length of the instruction phase is
expected to decrease, which can help expose more oppor-
tunities to improve the overall performance. Exploring the
hardware implementation of the adaptive cache partitioning
scheme with a finer granularity is an essential part of our
future work.
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