
Bit Prudent In-Cache Acceleration of Deep Convolutional Neural Networks

Xiaowei Wang, Jiecao Yu, Charles Augustine†, Ravi Iyer†, Reetuparna Das

University of Michigan †Intel Corporation
{xiaoweiw, jiecaoyu, reetudas}@umich.edu, {charles.augustine, ravishankar.iyer}@intel.com

Abstract—We propose Bit Prudent In-Cache Acceleration
of Deep Convolutional Neural Networks - an in-SRAM archi-
tecture for accelerating Convolutional Neural Network (CNN)
inference by leveraging network redundancy and massive
parallelism. The network redundancy is exploited in two ways.
First, we prune and fine-tune the trained network model and
develop two distinct methods - coalescing and overlapping -
to run inferences efficiently with sparse models. Second, we
propose an architecture for network models with a reduced
bit width by leveraging bit-serial computation. Our proposed
architecture achieves a 17.7×/3.7× speedup over server class
CPU/GPU, and a 1.6× speedup compared to the relevant
in-cache accelerator, with 2% area overhead each processor
die, and no loss on top-1 accuracy for AlexNet. With a
relaxed accuracy limit, our tunable architecture achieves higher
speedups.

Keywords-In-Memory Computing; Cache; Neural Network
Pruning; Low Precision Neural Network.

I. INTRODUCTION

Convolutional Neural Networks, or CNNs, have become

increasingly popular during the past two decades. Numerous

network models have been designed for a wide variety of

tasks. Behind the proliferation of neural network develop-

ment is the increased compute capability of modern hard-

ware. In addition to commodity CPU and GPU, customized

accelerators [1], [2], [3] have been developed to achieve

better latency, energy efficiency, and throughput for CNN

workloads.

Another acceleration paradigm is based on in-memory

architectures [4], [5], [6] that both reduces data movement

and leverages massive parallelism. For instance, Neural

Cache [6] is a promising design that repurposes SRAM

arrays in the last-level cache of general purpose processors

to create over a million bit-serial ALUs and leverages them

to accelerate CNN computation. In contrast to custom ac-

celerators, a general purpose processor cache based solution

improves performance of many other workloads when not

functioning as a CNN accelerator.

Unfortunately, Neural Cache architecture is unaware of

the redundancy in neural networks. Neural network com-

pression has been developed in the recent years, and it

provides promising opportunities to reduce the redundancy

significantly. Specifically, weight pruning [7], [8] and low-
precision [9], [10], [11] are two popular approaches for

neural network compression.

This paper poses the question: how can memory-centric

architectures, such as Neural Cache, benefit from removing

the redundancy in CNN computation? Further, we com-

pare the two redundancy elimination approaches of weight

pruning and low-precision weights, and analyze the perfor-

mance/accuracy trade-offs of these two related approaches.
There are several challenges for exploiting the sparsity of

pruned neural networks in Neural Cache. The vector par-

allelism in SRAM arrays requires that computation cannot

be skipped even if only one of the vector elements needs it.

This is the case for pruned networks where multiple channels

are calculated in parallel and sparsity is distributed across

channels. We solve this problem by developing techniques

which create dense computation by coalescing non-zero

filter channels. Thus, a reduced but dense compute structure

amenable for vector processing is created. Filter channels are

gathered into a dense format using a new offline pruning

and retraining process, while input channels are gathered

dynamically at runtime using a new hardware coalescing

unit.
Unfortunately, coalescing can increase input loading time.

In CNN computation, one input activation map is reused

across several different filters to create several output chan-

nels. Neural Cache broadcasts (using in-cache intra-slice

bus) the same input data to several filters, keeping input

loading time minimal. After pruning, we encounter a situa-

tion that different filters have been heterogeneously pruned

such that the same input data can no longer be broadcasted

to all filters, leading to a multi-fold increase in input loading

time. We tackle this problem by input-loading aware pruning

and exploring a filter channel overlapping technique which

does not change input data mapping from original unpruned

network models.
Finally, we develop efficient compute techniques for

low-precision neural networks. In-cache bit-serial compute

paradigm naturally takes advantage of low-precision input

activations, since compute cycles of bit-serial algorithms

scale down with bit-width. However, we observe that bit-

serial multiply-accumulate is inefficient when weights are

ultra-low precision such as ternary or binary, due to the extra

starting rounds for multiplication. We redesign the process of

multiply-accumulate for ternary/binary weights to combine

the multiplication and accumulation in fewer cycles using

logical operations.
In summary, this paper makes the following contributions:

• We develop techniques to leverage redundancy preva-

81

2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)

2378-203X/19/$31.00 ©2019 IEEE
DOI 10.1109/HPCA.2019.00029

lent in DNNs for memory-centric vector architectures

such as Neural Cache. Redundancy can be eliminated

by pruning weights or using lower precision.

• We analyze inefficiencies of convolution with pruned

sparse models, and propose novel techniques to enable

dense computation amenable for vector processing with

sparse DNN models. Specifically, we explore a pruning

method to coalesce non-zero filter channels and develop

a hardware block that dynamically coalesces the input

activations to align them with pruned weights. We also

develop a pruning method for overlapping multiple fil-

ters together to effectively utilize the vector units. This

method does not require input coalescing at runtime.

• We design new bit-serial in-SRAM compute algorithms

to exploit the ultra-low precision binary and ternary net-

work models. Convolutions with ternary/binary weights

are converted to logical operations and additions.

• We compare the proposed sparsity-aware architecture

with pruned models to the proposed low-precision

architecture. The related performance/accuracy trade-

offs are analyzed.

• The evaluated sparsity-aware architecture achieves a

17.7×, 3.7×, 1.6× speedup over server-class CPU,

GPU, and Neural Cache baselines without accuracy

loss; in terms of energy efficiency, the design is 34.0×,

13.8×, 1.6× better than CPU, GPU, and Neural Cache.

We further show that with accuracy loss allowed, the

low-precision architecture has a latency 43.6×, 9.1×,

3.9× better than CPU, GPU, and Neural Cache.

II. BACKGROUND

Figure 1. Computation of A Convolutional Layer.

A. Convolutional Neural Networks

Convolutional Neural Network (CNN) is a machine learn-

ing method that takes a 3D-array as input, performs con-

volution and non-linear functions on the array iteratively,

and extracts the array information for further tasks such as

classification. A typical CNN consists of many convolutional

layers, a few pooling and fully connected layers, and non-

linear functions between the layers. The overall procedure of

a convolutional layer is shown in Figure 1. A convolutional

layer takes in C channels of 2D activation maps as input,

with activation of each channel having H pixels in height

and W pixels in width. A batch of in total M 3D-filters

are the network parameters of the layer. Each 3D-filter has

C channels, each channel with R × S parameters called

weights, where R is the filter height and S is the filter

width. At convolution, the C channels of R × S filters are

overlaid on the C channels of inputs. The R× S ×C input

pixels are element-wise multiplied with their corresponding

filter weights, and then the products are summed up across

all C channels to produce one output pixel as shown in

Figure 1. The R×S filter slides over the H×W -sized input

activation with stride U , generating E×F output pixels per

3D filter. Therefore the M filters create a total of M×E×F
output pixels for one convolutional layer and these pixels

become inputs of the following convolutional layer. It has

been shown that among the end-to-end CNN computation,

most (90%) of the time is spent on convolutional layers [1].

Therefore this paper focuses on the acceleration of convo-

lutional layers.

Figure 2. Neural Cache Architecture Overview.

B. Neural Cache

Neural Cache [6] is an architecture which repurposes the

last level cache in general purpose processors to perform

massively parallel in-SRAM computing for neural networks.

Figure 2 shows the overall architecture of Neural Cache.

The building block of Neural Cache is bitline computing

enabled by SRAM array peripherals. In bitline computing,

two wordlines of an SRAM array are activated at the same

time and by sensing the shared bitline pairs (existing in Xeon

LLC), logical operations (and and nor) on the cell data of

the two wordlines can be performed [12], [13].

To perform arithmetic operations such as addition and

multiplication, a bit-serial architecture is utilized (Figure 2

(c)): data are mapped to a transposed layout where different

bitlines hold data from different elements in the operand

vector. Each n-bit element is stored across n wordlines, and

thus each wordline holds one bit-slice from all the vector

elements. The bits in each bit-slice are of the same bit

position. The arithmetic operation is done bit-slice by bit-

slice – for example, to compute A+B, bit-slice 0 of vector

A and bit-slice 0 of vector B are first activated and added

82

by the peripheral logic (generating sum and carry), then the

same operation is done to bit-slice 1, 2, ..., n − 1 of the

two operand vectors (carry taken from the previous bit-slice

step). For n-bit integer addition, bit-serial computation takes

n cycles; similarly, n-bit integer multiplication can be done

in n2+3n−2 cycles. The weights and activations are linearly

quantized to 8-bit integers for bit-serial computation.
In the above architecture, 256 bitlines in one 8 kB SRAM

array are turned into 256 ALUs in a vector unit. Xeon’s

35 MB LLC can accommodate 4480 such 8 kB arrays. Thus

up to 1,146,880 elements can be processed in parallel, while

operating at frequency of 2.5 GHz at runtime. By repurpos-

ing memory arrays, the above throughput is achieved for a

cost of 7.5% area increase of an SRAM array and less than

2% area overhead for the entire Xeon processor die. Note,

while a 35 MB LLC cache access from core takes 20-30 ns,

the smaller 8 kB SRAM arrays can themselves operate at a

frequency up to 4 GHz [14], [15].
Neural Cache uses the cache structure of 2.5 MB Xeon

LLC slice [14], [15], [16] for demonstrating its idea. For

fairness, we build our architecture upon the same cache

structure as described below. Multiple slices on a processor

die are connected by a ring. Each slice has 20 columns which

serve as 20 different ways of the set-associative LLC. Each

way consists of 4 banks and each bank has 4 SRAM arrays

of 8 kB. The 20 ways are connected by a 256-bit bus within

the cache slice. The ways and banks in a slice are shown in

the left hand side of Figure 3.

Figure 3. Neural Cache Data Mapping of a 2.5MB Slice.

Figure 3 shows a typical data mapping scheme of one

convolutional layer. In each 256×256 array, the filter weights

are stored in R×S×8 wordlines, and the input activations to

be multiplied with weights are loaded to another R×S× 8
wordlines; each bitline corresponds to one input channel.

The M filters span multiple arrays in the same or neighbor-

ing ways. One way of each slice is reserved for storing the

outputs of the previous layer and another way reserved for

system background processes. The other 18 ways hold the

replicated weights for in-cache computation.

The in-cache convolution is performed in the five succes-

sive stages as described below:

1. Weight Loading: At the start of each layer, the filter

weights are loaded from DRAM to the cache. Mapping a

2D filter to each bitline does not result in full utilization

of all bit-serial compute units. Thus filters are replicated

throughout all the ways and then slices to exploit parallelism.

For example, for AlexNet layer conv3, without replication,

only 98,304 bitlines are used for computation, resulting in

10% utilization. With replication, the utilization increases to

95%. The inter-slice and intra-slice interconnect structures

allow low-cost replication of weights using broadcasts. The

weights from all the M filters are broadcasted to all the

slices via the inter-slice ring, and then to all the ways via

the intra-slice bus. After filter replication, the output pixels

that still cannot be computed in parallel are computed in

serial.

2. Input Loading: Each slice computes a tile (subset) of E×
F output pixel positions across all M channels. The pixel

positions with neighboring heights and widths are mapped

to the same slice. Therefore, the output activations generated

in one slice can be used as the input activation of the next

layer. In input loading, the input activations are broadcasted

from the reserved way to all the compute ways via the intra-

slice bus. A small portion of the activations (at the border

of tiles) are transferred through the inter-slice ring.

3. MAC (Multiply-ACcumulation): After data loading, at

each array, the R × S weights multiply with the R × S
inputs sequentially; after each multiplication, the product is

accumulated into the partial sum in the reserved wordlines

in the array.

4. Reduction: To sum up all the input channels of each

filter, the partial sums at different bitlines are added up in

the reduction stage. In reduction, at each array, partial sums

of half the channels to be reduced are copied to another set

of wordlines and aligned channel-wise with the other half of

channels. Then the second half of partial sums are added into

the first half. The copying and addition are called one round

of reduction; the reduction rounds are conducted iteratively

until the final reduction result is calculated.

5. Output Transfer: After reduction, the output activation

maps at the compute arrays are transferred to the reserved

array in the stage of output transfer. Then the inputs at

a different height or width are loaded in, and the MAC,

reduction, and output transfer repeat.

C. Sparsity and Reduced Precision in CNNs

Neural networks demand a large amount of compute

resources. The number of operations required per convo-

lutional layer is proportional to R× S × C ×E × F ×M .

Previous literature proposed two methods to reduce the com-

putation requirements: 1) model pruning to reduce parameter

size [7]; 2) low-precision computing [9], [11], [10].

Sparsity in CNNs: Pruning is based on the observation that

83

a typical network has many weights whose values are close

to zero [7]. If these near-zero values are collapsed to zero,

then their multiplication and addition with inputs can be

skipped so that the total operations for a convolution and

data loading time will decrease.

A typical procedure of pruning [7] is briefly described

as follows. First, the weights to be pruned are determined

- weights from the pre-trained model are evaluated by a

type of regularization (for example, absolute value), and the

weights with regularization less than a threshold are chosen

to be pruned. Second, the pruned model is retrained to learn

the values of the remaining weights in the network. The

steps of weight pruning and retraining can be iteratively

performed to increase model accuracy. After pruning, the

network becomes sparse, and the percentage of the weights

pruned is the pruning rate. Han et al. [7] report an overall

63% pruning rate on convolutional layers of AlexNet.

However, if pruning happens at the granularity of each

individual weight, previous literature [8], [17] suggests that

the network sparsity cannot be easily exploited due to either

the extra decoding stage of compressed weights or the

low utilization rate of SIMD functional units. Many works

therefore propose structured pruning at multiple levels [8],

[18], where the weights with one or more shared coordinate

index in the R×S×C×M array are grouped together, and

each group either gets pruned entirely or remains entirely.

Reduced Precision CNNs: It is known that on general-

purpose hardware, integer operations are cheaper than float-

ing point operations. Therefore, it would be beneficial to

convert floating point values of weights and activations into

discrete integers and compute with the integer representa-

tions. Such conversion is called quantization. The quanti-

zation of filter weights can be done statically before the

inference, and the quantization of input activations is done

dynamically. In practice, 8-bit quantization of weights and

activations usually has negligible effects on accuracy. For

bit widths less than 8, researchers still achieve a reasonable

accuracy with proper quantization schemes [9], [10], [11].

The bit-serial compute diagram of Neural Cache makes

low bit-width arithmetic extremely efficient. The cycles

for addition scale down linearly with bit width, and the

multiplication cycles are proportional to the product of the

two operands – thus scaling down quadruply with bit width.

Our proposed architecture fully leverages the benefits of low

bit-width operands.

III. SPARSITY-AWARE ARCHITECTURE

The sparsity in filter channels can be leveraged to elim-

inate the energy spent on computation with zero-valued

filters, and speed up the convolution by filling up the in-

SRAM compute slots with effective computation. Neural

Cache architecture does not leverage sparsity. Each SRAM

array in Neural Cache is repurposed to function as a vector

unit with 256 SIMD slots. Sparsity in filter channels, when

Figure 4. Sparse Convolution with Coalescing.

Figure 5. Architecture of Coalescing Unit (CU). Left: Crossbar and
example data before coalescing (eight channels - D1 to D8) and after
coalescing (D1, D2, D4, D5, D8). Right: Reconfiguring Peripheral for one
switch connectivity. Xi,j : Output of RP to Crossbar, whether the switch at
(i, j) is connected. Pi,j : Boolean value of whether the position (i, j) is on
the “path.” IMi: Channel mask for the i-th channel.

stored in a dense format, leads to wasteful computation over

bitlines because some slots in the vector unit are being

utilized to compute zero. We propose two techniques to

avoid this, as discussed below.

First, we propose to coalesce all non-zero filter chan-

nels into consecutive SIMD slots (i.e., bitlines). This data-

mapping creates a dense structure from sparse filters. The

filters can be coalesced statically apriori during the offline

pruning/training phase. However, input channels or activa-

tions are not known until runtime and need to be coalesced

dynamically. We propose an area efficient coalescing unit to

dynamically coalesce the input channels. Second, we explore

the idea of overlapping non-conflicting filter channels in

different 3D filters. There are M possible 3D filters. The

advantage of this technique is that input channels do not re-

quire coalescing or any additional encoding during runtime.

The disadvantage is that the pruning rate achieved is lower

due to additional restrictions imposed by the overlapping

requirements.

In this section, we describe the details of the above

techniques, namely sparsity with coalescing and sparsity

with overlapping.

A. Sparsity with Coalescing

Figure 4 provides an overview of the procedure of

sparsity-aware computation by coalescing channels. We fol-

low the structured sparsity approach [8] for pruning and use

the granularity of a filter channel for pruning. Our pruning

algorithm described in Section III-A3 selectively prunes

84

unimportant R × S 2D-filters. The choice of 2D filter as

a granularity of pruning finds the desired balance between

achieving a high pruning rate, and keeping the encoding

of the pruned filters simple. Each compressed 3D filter is

equipped with a channel mask which distinguishes the non-

zero channels from zero channels. Different 3D filters are

permitted to have different sparsity patterns (and different

channel masks) as shown in the figure.

We propose a dynamic coalescing process that helps

to align input activations to heterogeneously pruned filters

(conceptually shown in right hand side of Figure 4). Before

coalescing, the input data has C channels with each of them

being an H × W activation map. There are M sets of

different R×S×C filters for one convolutional layer, and the

inputs are coalesced according to the M filter pruning pat-

terns. After pruning, each of the M filters is equipped with

one channel mask vector of C bits, where each bit indicates

whether the 2D R×S filter at the corresponding channel is

pruned (0 for pruned channels, 1 for unpruned channels).

During coalescing for the m-th filter, if Mask(c,m) = 1,

then the c-th input channel is copied to the coalesced input

data; otherwise the c-th input channel will not appear in the

coalesced input data. Therefore, after coalescing, only the

input channels that correspond to unpruned filter channels

are preserved; such input channels and filter channels are

automatically aligned. Section III-A1 provides details of the

coalescing process.

After coalescing, convolution is performed only on the

dense channels of the filter and activation as described in

Section III-A2.

1) Dynamic Input Coalescing

To implement dynamic input coalescing, we propose the

design of Coalescing Unit (CU) and place the CUs in the

reserved way. Each CU is connected to one 16 kB subarray,

and is placed between the sense-amplifier and the intra-slice

data bus connecting multiple ways in a slice. In total 8

CUs are required per L3 slice. Note, input activations are

broadcasted from the reserved way to all the compute ways

via the data bus in Neural Cache. Thus placing CUs only

in the reserved way is sufficient. The activation data are

coalesced right before being transferred on the bus, making

the incoming input data at compute arrays already aligned

with the coalesced filters, with a minimal hardware overhead

of CUs.

The Coalescing Unit consists of a 256 bit × 256 bit
crossbar, reconfiguring peripheral (RP) which determines

which inputs of the crossbar are connected to which outputs,

and a FIFO buffer.

Crossbar: At the input interface, 256 bits from 256 input

channels are fed to 256 data in ports. The 256×256 switch

connectivity configuration is initialized once per layer by

RP. With the configured switch, the output of crossbar is

an ordered gather of the input data bits with corresponding

mask value 1. With the crossbar, the output can be any

combination and arrangement of the 256 bits, so the inputs

can be coalesced under any sparsity pattern. Figure 5 shows

the structure of a Coalescing Unit with a smaller 8-bit

input/output vector size, as well as the circuits of RP for

one switch value output. In this example, among the 8 input

channels, the channels 3, 6, 7 are pruned, so the outputs are

data from the channels 1, 2, 4, 5, 8.

Reconfiguring Peripheral (RP): The RP can be imple-

mented in combinational logic. The right side of Figure 5

shows how one switch value produced by RP is related to the

neighboring switch values; such circuit is repeated at each

cross-point to generate the 256×256 switch value array. The

key idea is: if one switch is set, then the switch to its right-
down may be set; else, the switch to its down may be set.

We call such a dependency chain a path, and the switches

on the path have the potential to be set. Whether a switch on

the path is set or not depends on whether the corresponding

channel mask is 1. In Figure 5, Pi,j denotes whether a switch

is on the path; Xi,j is the actual switch value of the position

(i, j) produced by RP. IMi is the input mask bit of the

channel i, representing whether the input channel i should

be passed to the crossbar output.

Formally, the logic of Pi,j and Xi,j is:

Pi,j = (Pi−1,j ∧ IMi−1) ∨ (Pi−1,j−1 ∧ IMi−1)

Xi,j = Pi,j ∧ IMi

P0,j (the first row) do not depend on any other switches and

will be initialized with preset value. Pi,0 (the first column)

can also be overwritten with initial value besides depending

on the switch Pi−1,0.

When there are multiple 3D-filters mapped to the same

array after pruning, the input masks of different filters are

passed to the RP sequentially and the switch values are

updated sequentially for each filter. Also, the starting point

of the path is set according to the actual starting position

of the current filter in the output. For example, if the first

filter has 32 unpruned channels, then when the RP calculates

switch values for the second filter, P0,32 is set to 1 as the

first row initialization. The number of unpruned channels

for each filter can be stored alongside the filters (8 bits for

a 256-channel filter). The upper triangle of the crossbar is

used in this case, to coalesce the activations starting from

the second filter mapped to the array.

Note that this whole RP configuration process is done
once per layer. This is because even with multiple output

pixels to compute in serial, only the input pixel position

changes; the indices of the effective input channels remain

the same.

FIFO buffer: Due to the column muxing for the bitlines,

32 bits of data are read out of the SRAM array, and the data

bus for each array is also 32-bit wide. However, the interface

of the crossbar is 256-bit wide. Therefore, the FIFO buffer

serves as a bridge for balancing the different bandwidths

85

between the data bus and the crossbar, and between the

crossbar and the SRAM array. It collects every 32 bits from

array sense-amps and sends in 256-bit data to the crossbar.

At the output of the crossbar, the FIFO buffer transmits the

256-bit data to the bus in 32-bit chunks.
The crossbar size of 256×256 can handle filters with up

to 256 channels. To accommodate filters with more than

256 channels, we simply split the filters into smaller ones,

each with only 256 channels, and treat them as multiple

sequential filters. The normal convolution steps can proceed

until the reduction ends. The reduction results of each 256

input channels can be summed up in the end.
2) Convolution Operation
With the coalesced input channels, a few modifications

to the convolution procedure are proposed regarding the

irregularity in data mapping. We describe these changes

below.
(a) Weight Loading: The filter weights of the pruned model

can be coalesced offline after training, before the inference

process starts. All the weights in the pruned channels are

eliminated so they are no longer loaded from DRAM to

the cache. The weight loading time is therefore reduced

proportionally to the percentage of channels pruned.
(b) Input Loading: With the input-loading aware structured

pruning design (details in Section III-A3), to compute output

pixels in one position, it is sufficient to load the coalesced

inputs once from the reserved way to all the compute ways

via the intra-slice bus. The total time for input loading

will remain the same as baseline, mainly because the total

amount of transferred data does not change. The incurred

overhead to input loading includes CU latency and the time

to load the masks for coalescing. The CU latency is short

when compared to bus transfer; the data size of masks

(C ×M bits are required per layer) is small compared to

weights.
(c) MAC: The total number of output pixels computed seri-

ally is reduced because fewer input channels need comput-

ing. Hence, more output pixels can fit in the same number of

bitline computing slots, reducing the output pixels computed

in serial. Thus the total time on MAC is reduced. Note, the

standard MAC algorithm is unaffected by coalescing, since

the filters are pruned at the granularity of each channel,

instead of individual weight.
(d) Reduction: The reduction stage needs modification

because the boundaries for filters are irregular now. We

design a “preparing round” to tackle this difficulty. The

core idea of preparing round is to perform initial reductions

within each filter until there is enough space to fit in all

the filters. Two sets of fresh wordlines are allocated for

performing copying and addition. The eight 32-bit segments

in a 256-bit wordline are sequentially copied to the newly

allocated wordlines, where they match up for addition. The

32-bit segment size is a result of 8-way column multiplexing

of SRAM arrays. When copying a segment consisting of

weights from more than one filter, the 32-bit segment is first

AND-ed with a mask to selectively copy the weights only

from the desired filters. After the preparing round, the filters

are lined-up ready for normal reduction. The reduction is

done in parallel for all the filters within an array. For filters

that span more than one array, the reduction within each

array is first done, before intra-array results are added up

finally.

For example, in AlexNet layer conv3, C=256. In one

array, there are 3 different filters for reduction, and the cor-

responding bitlines are BL1-BL96, BL97-BL160, BL161-

BL256. Each partial sum takes up wordlines WL1-WL32.

In the preparing round, 64 new wordlines (WL33-WL96) are

allocated, and the partial sums of the n-th filter are copied to

these 64 wordlines of the n-th bitline quarter. For instance,

for the first filter, BL1-BL64 are copied to WL33-WL64 of

BL1-BL64; BL65-BL96 are copied to WL65-WL96 of BL1-

BL32. Then the second half of new wordlines are added into

the first half. After such starting round, each filter takes up

64 bitlines and the remaining reduction can be done as in

Neural Cache.

3) Weight Pruning Method

Similar to the previous pruning techniques [7], [8], we

prune the weights that would have the least impact on final

inference results. We use the L2-norm (sum of squares of all

elements) of each 2D filter to measure its importance. All the

2D-filters with an L2-norm lower than a given threshold are

pruned. This criterion is straightforward and also effective

in our experiments. Other criteria for weight importance

measurement can also be directly applied to prune networks

at the same granularity.

The pruned models will be fine-tuned to regain the accu-

racy. A [C×M]-bit mask is generated for each convolutional

layer to indicate the pruned 2D filters. All masked weights

are fixed to 0 during the retraining. The pruning and retrain-

ing steps will be performed layer by layer to achieve the best

accuracy. Also, the pruning rate will be gradually increased

until the targeting accuracy cannot be met.

To avoid the irregularity in input activation loading, we

propose a different, more structured, criterion for pruning. To

minimize the number of on-bus data transfers, it is desired to

have all the SRAM arrays connected to the same data bus to

get the exact same channels after pruning. Note that in each

16 kB sub-array, the two 8 kB arrays share the same sense-

amplifiers, and thus using the same pruning pattern for such

two arrays is beneficial. We denote the eight 8 kB arrays

within the same way and at the orthogonal dimension to the

dimension of the shared sense-amps as a half-way, and the

channel masks need to be the same for all the half-ways.

The procedure for the more structured pruning is as

following: (1) According to the pruning rate, calculate the

number of channels in all filters after pruning. Dividing this

total channel count by the bitlines (channels) in a half-way,

86

we can get the number of half-ways, Y , required for one

output pixel position. (2) Divide the M filters equally into

Y half-ways. Group the channels that have the same position

within a half-way together. Then there are C ×M/Y such

channel groups. (3) Calculate the L2-norm of each channel

group and order them. The groups with the lowest L2-norm

will be pruned until the pruning rate is met.
The above pruning procedure is necessary for efficient

dynamic coalescing. Without the customized pruning ap-

proach, the weight sparsity rate is so low that there is little

opportunity to coalesce. The pruning and retraining process

is offline, so the inference performance is not affected.

Figure 6. Sparse Convolution with Overlapping.

B. Sparsity with Overlapping

Overlapping is another technique we design to leverage

sparsity. The key insight is that, if different filters are sparse

at different channels as a result of customized pruning,

then they can be overlapped as one filter when doing MAC

operations. Figure 6 provides an overview of the convolution

process with filter overlapping. During offline training, the

filters are grouped and pruned so that multiple filters can

be combined into one. At runtime, the compressed filters

directly perform a 2D-MAC with the input activation maps

– channels are naturally aligned; at reduction, the partial

sums from different filters are gathered correctly according

to the channel mask vector.
1) Convolution Operation

After the filters are overlapped in preprocessing, the

weight loading, input loading, and MAC stages for convo-

lution are the same as the baseline. The reduction stage is

different from baseline and specified as follows.
Similar to reduction with coalescing, an additional prepar-

ing round is required before the normal reduction operation,

due to the interleaving of MAC results computed with

multiple 3D-filters. In the preparing round, two sets of fresh

wordlines are allocated (the number of wordlines of each

set equals the bit width of partial sum). For an array with

N filters, the bitlines are partitioned into groups of 256/N
bitlines, and the partial sum from each filter is copied to

its own group of 256/N bitlines to perform reduction in the

preparing round. Copying of partial sums is done selectively

with channel masks. After the preparing round, reduction

for the N filters in the same array can be done in parallel.

For example, in AlexNet layer conv3, C=256. In the first

8kB array, there are 32 wordlines (WL1-WL32) storing

the partial sums of the overlapped filters (M=1,2). In the

preparing round for reduction, the BL1-BL128 of WL1-

WL32 are selectively copied to another set of wordlines,

WL33-WL64, based on channel-mask for C1-C128 of M1.

Then, BL129-BL256 of WL1-WL32 are selectively copied

to BL1-BL128 of WL65-WL96, based on channel-mask

for C129-C256 of M1. Next, the partial sums for M2 are

similarly copied to BL129-BL256 of WL33-WL96. Then,

addition is done between WL33-WL64, and WL65-WL96.

After the above starting round, the partial sums of filter M1

are in BL1-BL128, and those of M2 in BL129-BL256. So

the remaining reduction can proceed as in original Neural

Cache.

The total latency for reduction will drop thanks to the

reduced number of output pixels computed in serial. The

extra overhead includes the time for loading the channel

masks, consisting of C ×M bits per layer, as well as the

extra preparing round.

2) Weight Pruning Method

Similar with coalescing, the filter weights are pruned at

the granularity of each R× S 2D-filter.

With the overlapping scheme, it is desired that the M dif-

ferent filters are pruned at different channels. Such pruning

generates remaining filters that can overlap with each other.

To achieve this, we can explicitly control which channels

are pruned by carefully designing the weight masks. All

the M 3D filters are divided equally into “overlappable

groups,” where each group has N filters. The N filters

in each group are masked such that at each channel, only

weights from one filter are unpruned, while others being

pruned. The remaining filter must have the highest L2-

norm of its weights over other filters at the channel. For

example, if N=2, then we take the 1st and 2nd filters,

compare the L2-norm of the 2D-filter weights of the two

filters iteratively from the 1st channel to the last (C-th)

one. At the channel c, if L2-norm(c, 1)>L2-norm(c, 2),
then Mask(c, 1)=1, Mask(c, 2)=0. Otherwise, Mask(c, 1)=0,

Mask(c, 2)=1. The masks for the 3rd and 4th, ..., (M -1)-

th and M -th filters are generated with the same rule. With

this pruning procedure, the pruning rate is 1 − 1
N . It is

possible to prune the filters in other patterns for overlapping,

which might yield better accuracy. Such exploration is left

for future work.

After the masks are generated, the network is fine-tuned

layer by layer as described in Section III-A3. To adjust the

target pruning rate, the parameter N can be tuned on a layer-

by-layer basis.

87

IV. LOW-PRECISION ARCHITECTURE

Reducing the bit width of filter weights and activation

maps, while maintaining a reasonable inference accuracy, is

well studied in literature. Due to the bit-serial characteristic

of the in-SRAM computation, it is natural to leverage the

reduced bit width to accelerate computation. Specifically,

using ternary and binary weights can further replace the

requirement of multiplication simply with addition.

With fewer bits in the weights and activations, it is

possible to fit more filter weights along a bitline and avoid

unnecessary filter splitting (where one 2D filter is split and

mapped to multiple bitlines), thus reducing the total number

of reduction needed. Also, the maximum possible bit width

for reduction result decreases, saving the cycles for copying

and addition in reduction. Finally, less time and energy will

be spent on data movement for loading weights and input

activations - the data size to load is proportional to the bit

width.

The following subsections describe the architectural sup-

port for ternary and binary networks.

Figure 7. MAC step of Ternary Network.

A. Ternary Networks

Ternary networks have weight values from the set {0, 1,

-1}. Each weight can be encoded with 2 bits – one for sign

(bit 0 for positive; 1 for negative), the other for magnitude

(bit 0 for zero; 1 for one). To simplify computation, we

require a zero be encoded as positive zero. The multipli-

cation of ternary weights with quantized activations can be

achieved with supported arithmetic operations. First, each

bit-slice of activation is AND-ed with the magnitude bit to

perform the multiplication with zero-valued weights. The

AND-ed results are written to a new set of wordlines for

the product. Second, each bit-slice of the product is XOR-

ed with the sign bit, to compute the 1’s complement of the

product for those channels with weight values -1. Finally, the

products are added to the partial sums for accumulating the

products from the same channel, after being sign-extended

to match the partial sum bit width. The sign bit of weight

Table I
BASELINE CPU & GPU CONFIGURATION

CPU Intel Xeon E5-2697 v3
Base Frequency 2.6 GHz
Cores/Threads 14/28

Process 22 nm
TDP 145 W

Cache 32 kB i-L1 per core, 32 kB d-L1 per core,
256 kB L2 per core, 35 MB shared L3

System Memory 64 GB DRAM, DDR4

GPU Nvidia Titan Xp
Frequency 1.6 GHz

CUDA Cores 3840
Process 16 nm

TDP 250 W
Cache 3MB shared L2

Graphics Memory 12 GB DRAM, GDDR5X

is used as carry in the addition, and therefore the 1’s

complement generated in the previous step will become

2’s complement here. Collocating the conversion to 2’s

complement with the partial sum accumulation saves one

addition operation.

Figure 7 demonstrates an example of 4-bit activations

convolving with ternary weights. The figure shows one mul-

tiplication and addition in the MAC step, where 4 channels

are computed in parallel. W[1] is the sign bit and W[0] is

the magnitude bit. In Step 1, A[3:0] is bitwise AND-ed with

W[0] and the results are written to P[3:0]. In Step 2, P[3:0] is

bit-wise XOR-ed with W[1] and the results update P[3:0]. In

Step 3, P[3:0] is accumulated into partial sum S[7:0], while

being sign-extended with the weight sign bit W[1] and also

using W[1] as the carry. In this example, 8 cycles are spent

on multiplication (Step 1-2), and another 8 cycles are spent

on addition (Step 3).

B. Binary Networks

Binary networks have weight values of either 1 or -1.

Each weight can be encoded with only one sign bit. MACs

of weights and activations can therefore be converted to

addition and subtraction of activations. For the in-cache

compute, the algorithm is similar to the one for ternary

networks, but without the first step of AND-ing with mag-

nitude bit. For 4-bit activations, it takes 4 cycles to do one

multiplication, and a number of partial sum bit width cycles

for one accumulation.

V. EVALUATION METHODOLOGY

CPU/GPU Baseline: The dual-socket Intel Xeon E5-2697

v3 serves as the CPU baseline platform; Nvidia Titan Xp as

the GPU baseline. The hardware specifications are summa-

rized in Table I. We use TensorFlow v1.9 and its profiler

as the software framework and the tool for measuring the

latency of CPU/GPU baseline. For CPU energy and power

measurement, we use RAPL tools [19]. Nvidia-SMI is used

for measuring GPU power and energy. Note that the baseline

CPU chip has the exact same L3 cache structure as the model

for the Neural Cache architecture.

Neural Cache Baseline: We use an in-house cycle-

88

accurate simulator for estimating the time and energy for

Neural Cache arithmetic. For fair comparison, we use the

same cycle latency and energy model as reported in the

paper [6]. The in-SRAM compute frequency is at 2.5 GHz.

The energy per cycle is 15.4 pJ and 8.6 pJ for compute and

read/write cycles in SRAM, respectively.

The time of data loading (filter weights and input activa-

tions) depends on the latency of transferring data between

DRAM and LLC, as well as on the LLC inter-slice ring. To

model this, we develop a micro-benchmark in C measuring

the latency of loading data from DRAM to the CPU. The

micro-benchmark loads data to the exact cache sets as the

data loading for in-cache computation. Note that for input

loading, the data are loaded from one reserved LLC slice,

so we exclude the DRAM bounded time reported by Intel

VTune. We use RAPL tools [19] to measure the CPU energy

of the micro-benchmark, for estimating the data loading

energy.

Proposed architecture: For sparsity-aware pruning, we

develop a tool-chain in TensorFlow. The cycle-accurate

simulator is used to model our proposed sparsity and low-

precision architecture with proper modifications. The la-

tency, energy and area overheads of the proposed circuit are

modeled by synthesis. For the Coalescing Unit, we use IBM

45 nm soi12s0 cell library and Synopsys Design Compiler

for modeling the Reconfiguring Peripheral. With scaling to

22 nm, the area of each RP is 0.05 mm2. We conservatively

do not scale for the power and latency estimation. The

estimated power of each RP, including leakage power and

dynamic power, is 325 mW. The RP has a latency of 29.2 ns,

which is equivalent to 73 cycles at 2.5 GHz. The 256×256

crossbar is modeled conservatively at 28 nm. Each crossbar

is 0.032 mm2, and it transmits 256 input bits in a latency

of 163 ps and an energy of 49 pJ. In total, the 8 Coalescing

Units in the reserved way translate to less than 7% area

overhead to a cache slice and 1.9% area overhead to the

processor die.

CNN models: We use AlexNet [20] and Inception v3

[21] as the network model for evaluating performance and

accuracy. The dataset is the ImageNet 2012 1K dataset

for image classification [22] (training set for training and

fine-tuning, validation set for evaluating accuracy). For

evaluating the performance of CPU and GPU baseline, the

network weights are floating point numbers (single-precision

for CPU, half-precision for GPU) because the quantized

network has worse performance on CPU and GPU platforms

due to lack of optimized software libraries. To fairly compare

with CPU/GPU baselines, we apply state-of-art pruning

techniques of Scalpel [8] - a pruning method for CPUs and

GPUs. For evaluating the accuracy of Neural Cache baseline

and sparse architecture, we perform 8-bit linear quantization

on weights and inputs, based on the dynamic range of all

the weights/inputs in one layer. Note that for the sparsity

architectures, the quantization happens after pruning and

fine-tuning the network. Quantization for ternary network is

done with the approach described in WRPN [23], where the

weights are first clipped by the range [-1, 1] and then linearly

quantized. For binary network quantization, we follow the

approach in DoReFa-Net [10].

VI. RESULTS

In this section, we show the results of latency, energy,

for all convolutional layers of the CNNs. We also show the

inference accuracy and model size after pruning. The con-

figurations we evaluated are: CPU and GPU baseline (CPU-

base, GPU-base), Neural Cache baseline (N$-base), sparsity-

aware architecture with coalescing (SPR-coal)/ overlapping

(SPR-olap), and low-precision architecture with 4-bit acti-

vation, ternary (LPR-2b)/ binary (LPR-1b) weights.

A. Latency

Figure 8 shows the latency of all the convolutional layers

of the AlexNet with corresponding configurations. The CPU

and GPU baseline have significantly higher latencies of 6.89

ms and 1.43 ms. All the accelerator architectures benefit

from in-situ computation and a large number of SIMD slots.

The Neural Cache baseline is 0.619 ms. The LPR config-

urations achieve the best latency at the cost of accuracy

loss, 0.199 ms and 0.158 ms for ternary and binary models

(3.1× and 3.9× speedup over N$-base). This is because bit-

serial computation scales with bit-width intrinsically. The

SPR-coal and SPR-olap achieve 0.375 ms and 0.390 ms of

latency.

Figure 9 compares the layer latency (break down into

5 stages) of SPR/LPR configurations with Neural Cache.

For SPR configurations, we see a significant drop in weight

loading time, thanks to the reduced size of total weights.

The MAC time goes down because the number of serial

computation required is smaller. The gain of input loading

time savings is reduced by the large input size of the first

layer, where pruning is not applied for maintaining accuracy.

The reduction time goes down slightly as expected, where

the benefits of fewer channels are offset by the overheads

of the preparing round computation and mask loading.

The performance is also affected by the parameters of

layers. The layers with larger filter sizes, more operations

and smaller input data sizes enjoy a better speedup since the

weight loading and MACs can be better accelerated. Also,

a higher pruning rate leads to a higher speedup for SPR

configurations.

Figure 10 further breaks down the overall latency of

SPR-coal. The computation (MAC and reduction) consists

about half of the latency, with 28% for MAC and 20% for

reduction. The weight loading also takes up a significant

portion (32%), which is in part due to the long latency of

DRAM communication. The latency for all the convolutional

layers and the relative speedup over CPU baseline, for

Inception v3, are shown in Table IV.

89

Figure 8. Total Convolution
Latency Across Layers.

Figure 9. Latency of Each Convolutional Layer.

Figure 10. Latency Breakdown of
SPR-Coal Configuration.

Figure 11. Accuracy vs Performance for AlexNet.

B. Accuracy vs Performance Trade-off

An overview of accuracy vs. performance for all con-

figurations is presented in Figure 11. The top-1 accuracy

on the validation set is chosen as the accuracy metric, and

performance is quantified as the speedup over baseline CPU.

The CPU baseline has an accuracy of 57.97% and N$-base

is 57.84% with 8-bit quantized weights and activations. The

SPR configurations may achieve zero (SPR-olap, 58.03%) or

less than 0.5% accuracy loss (SPR-coal, 57.59%). There are

three connected data points for SPR-coal on the graph, which

is achieved by varying the sparsity at structured pruning: the

two points with higher sparsity have the accuracy of 53.34%

and 51.87%. Note that the SPR configurations are quantized

to 8-bit weights and activations as described in experiment

methodology.

Overall, SPR methods can maintain minimal accuracy loss

while offering up to 18.4× speedup over CPU baseline.

SPR-coal also enables flexible trade-off between accuracy

and performance. The point SPR-coal (51.87%, 35.5×) has

better speedup than LPR-2b, also with a 1.37% higher accu-

racy. LPR-1b achieves the highest speedup (43.6×), at the

cost of a 7.67% accuracy loss to CPU-base. If future research

improves the accuracy for LPR models, the LPR data points

will shift right in the figure, making them a more competitive

option. The LPR-2b-W data point is experimented with the

same configuration with LPR-2b except that the channel

number is doubled for the all the layers to improve accuracy,

as described in WRPN [23]. Although the accuracy is close

to the baseline, the speedup is lower than SPR configurations

because doubling channels incurs overheads to all stages.

For LPR-2b-W, the widening of input channels C by 2×
also requires widening of output channels M by 2×. The

number of weights is proportional to C×M , so it increases

by 4× with widening, offsetting the 4× reduction from 8-

bit weight baseline to 2-bit LPR configuration. The time for

ternary weight MAC does improve but in reduction stage

the total number of channels increases by 4×. Overall the

speedup of LPR-2b-W is worse than SPR and 5% better

than Neural Cache baseline.

The top-1 accuracy results with Inception v3 are summa-

rized in Table IV.

C. Energy

Figure 12 plots the estimated energy consumption of

convolutional layers of AlexNet for all the configurations.

Baseline CPU has the highest energy at 0.512 J. N$-

base consumes 0.024 J. LPR-1b consumes the least en-

ergy at 0.007 J. SPR-coal and SPR-olap have the energy

consumption of 0.0151 J and 0.0150 J, respectively. The

layer-by-layer energy consumption is plotted in Figure 13.

Leakage indicates the background leakage energy on CPU

and DRAM. In N$-base the most significant portion is MAC,

and the LPR and SPR both successfully reduce MAC cycles

and thus energy. LPR-1b is 3.4× more energy efficient

than N$-base while SPR-olap achieves 1.59× improvement.

Figure 14 shows the energy breakdown of SPR-coal, where

MAC dominates energy consumption at 42%. Less than

40% of energy is spent on data movement. Table IV shows

the energy consumption of all the convolutional layers for

Inception v3 and the energy efficiency improvements over

the CPU baseline.

The savings in energy can be attributed to the reduced

amount of necessary computation and data movement, with

the removal of redundant filters. The energy trend is similar

to the latency, since at computation the SIMD slots are

highly utilized.

We further propose the following techniques to reduce

90

Figure 12. Total Energy
for Convolution.

Figure 13. Energy of Each Convolutional Layer.

Figure 14. Energy Breakdown of
SPR-Coal Configuration.

Table II
PRUNING RATE OF SPR-COAL AND SPR-OLAP

Layer conv2 conv3 conv4 conv5 Overall
SPR-coal 27% 60% 55% 42% 50%
SRP-olap 50% 50% 50% 50% 49%

Table III
MODEL SIZE COMPARISON

Neural $ LPR-2b LPR-1b SPR-coal SPR-olap
2285 kB 602 kB 321 kB 1147 kB 1163 kB

energy. First, based on the observation that most of the

unpruned 8-bit quantized weights are centered around the

value 128, we can use fewer bits to encode the weight values

that are close to 128. In MAC, for those encoded weights,

it takes fewer cycles since the bit width is reduced (for an

n-bit weight, the multiplication needs 11n-2 cycles). Then,

the input activations corresponding to encoded weights are

added up and then shifted to correct the offset in weight

encoding. Second, during reduction, the column peripherals

of the bitlines that do not have active partial sum data can

be turned off. For example, in the addition phase of the

first reduction round, half of the total bitlines do not need

activating. Third, we can power-gate the unused CPU cores

to save static energy. It is sufficient to leave one core running

to control the Neural Cache operations, while other cores are

power-gated.

With zeros in the activations, there can be additional

savings by selectively disabling the bitlines at the write-back

cycle of the in-SRAM compute. The zeros in the activations

can be detected by sensing the shared bitline: for an 8-bit

activation, for instance, it is cheap to sense in analog whether

the AND of the 8 bitlines is zero. If so, then this activation

must be zero and a mask bit is set to skip the computation on

this bitline at the MAC stage. This can lead to an additional

8% of the total energy savings on average, which are not

included in the reported results.

D. Model Size

In Table III, the total sizes of the pruned/quantized models

for AlexNet are compared. For low-precision models, the

model size decreases linearly with the bit width. For pruned

models, the model size is determined by the pruning rate

(summarized in Table II), with a small overhead of mask

Table IV
EFFICIENCY OF INCEPTION V3 MODEL

Architecture
latency

(ms)
energy

(J)
top-1

accuracy speedup
relative
energy

efficiency
CPU 56.8 6.14 78.5% 1.0 1.0
GPU 19.9 2.73 78.5% 2.9 2.2

Neural $ 4.66 0.18 78.3% 12.2 35.2
SPR-coal 3.43 0.12 76.7% 16.6 50.1
SRP-olap 3.64 0.13 77.2% 15.6 45.8
LPR-1b 1.00 0.03 61.0% 56.7 183.6

Table V
COMPARISON WITH ASICS. AREA SCALED TO 22 NM.

Architecture Area
(mm2)

Latency
(ms)

Inferences
/(s·mm2)

Inferences
/(s·mm2·J)

- with DRAM
energy

SPR-coal 9.8 0.38 272 17,977
SPR-coal (w/o RP) 4.2 0.47 511 29,242

Eyeriss [24] 1.4 115.3 24 1,511
Cambricon-X [25] 0.7 4.97 275 23,226

SCNN [17] 14.9 0.76 88 N/A

vectors. The SPR-coal and SPR-olap achieve 49.8% and

49.1% pruning rate, respectively. The pruning rate falls in

the medium level, and is exploited by our architecture with

high efficiency. The model size of LPR-2b is reduced by 4×
and LRP-1b by 8×, which is the direct result of using low

numerical precision of weights. For Inception v3, in both

SPR-coal and SPR-olap, 50% of weights are pruned for the

layers we prune.

E. Comparing to ASICs

To demonstrate the efficiency of this work over other ac-

celerators, in Table V, we perform a comparison with recent

works on sparsity-aware DNN accelerators. Eyeriss [24] is

a low-power DNN accelerator. Cambricon-X [25] optimizes

for sparse weights. SCNN [17] optimizes for both sparse

weights and activations. We use the SPR-coal configuration

in comparison. The area overhead includes the modifications

required by Neural Cache and the additions for this work.

To optimize for area efficiency, we propose another design,

where the crossbar values of the Coalescing Unit are di-

rectly loaded from DRAM instead of being generated from

the Reconfiguring Peripheral. This design incurs a higher

latency, as shown in the table. We do not synthesize or layout

91

other ASICs. Instead, the area overheads are scaled to 22 nm

process node, according to the relationship between area and

technology node for recent processors [26]. The energy

and frequency are as reported in the original papers and not

scaled. We compare the throughput under the unit area and

energy. The results are shown include energy consumed by

DRAM. The latencies of Cambricon-X and SCNN are not

directly provided, so they are estimated based on the cycle

count and frequency. The accelerator energy is estimated

based on the reported average power and the estimated

latency. The energy of SCNN is not estimated because the

average power for SCNN was not reported in the paper. The

DRAM energy of Eyeriss and Cambricon-X is estimated

based on the DDR4 power model of Micron [27].

Compared to the other ASICs, our design has the shortest

latency thanks to the high parallelism. The area-optimized

design has a small increase in latency because the co-

alescing configuration is read from DRAM, but it still

outperforms other accelerators in terms of throughput per

area. Comparing the throughput per area per energy (not

including DRAM), our design is within 1.8× of Cambricon-

X. However, when DRAM energy is included, our design is

better in this metric than Cambricon-X. In contrast to the in-

memory architecture of this work, Cambricon-X has a small

on-chip buffer, and hence requires a lot of off-chip data

transfer between DRAM and the accelerator chip. Please

note that our architecture achieves the stated improvements

while being a general purpose processor. Further, the in-

cache compute capabilities can be leveraged to accelerate

several other application domains, including CNNs.

VII. RELATED WORK

To the best of our knowledge, this is the first work that

leverages sparsity and low-precision for in-SRAM CNN

inference acceleration. We describe the related work below.

In-situ SRAM Computation: A few previous works

demonstrate the feasibility of in-situ computation in SRAM

arrays [12], [13]. Compute Caches [12] performs logical

operations and binary matrix multiplication. Cache Automa-

ton [28] targets non-deterministic finite automata processing.

Neural Cache [6] accelerates CNN and is the compared

baseline of this paper. There are ASIC [2], [3], [24] and

FPGA [29] accelerators built for CNN acceleration. While

the ASIC solutions achieve high efficiency, they incur extra

design cost. ASICs lack flexibility in that they cannot be re-

purposed for other domains. In contrast, cache improves the

performance of many other workloads when not functioning

as a CNN accelerator. FPGA solutions provide flexibility but

require additional hardware.

Sparsity-aware NN accelerators: EIE [30] is an ASIC

for DNN inference which leverages sparsity in weights and

activations. It uses a compressed model to fit the network

in the on-chip SRAM. However, it focuses on the fully

connected layers while our work accelerates convolutional

layers, which take up the majority of CNN inference time.

SCNN [17] proposes an accelerator for sparse CNNs with

a dataflow that multiplies the non-zero weights and ac-

tivations of the same channel while keeping them in a

compressed format. Eyeriss [1] uses clock-gating to skip

unnecessary MAC operations and save energy; it does not

improve convolution latency. Cnvlutin [31] detects zeros in

activations with hardware and skips ineffectual computation.

Stripes [32] and Pragmatic [33] apply variations of bit-serial

computation and save computation time proportional to bit-

width, where the necessary bit-width is determined by the

network redundancy in each layer. Cambricon-X [25] is an

accelerator with an indexing module for efficiently selecting

the non-sparse weights and activations. The above works

build customized ASIC, while this paper is based on the

cache structure of commodity general purpose processors.

VIII. CONCLUSION

Our proposed in-cache architecture improves latency and

energy efficiency by skipping sparse weights with two

schemes – coalescing and overlapping. In coalescing, the

effective input channels are coalesced from the original

activation map efficiently by the Coalescing Unit. Therefore

the vector slots will not be wasted on ineffective compu-

tation. In overlapping, the filters are overlapped with each

other where the non-zero channels do not conflict. Hence,

the utilization of vector units is increased due to more

filters being convolved with inputs at the same time. We

also develop in-cache compute techniques for low-precision

CNNs with binary and ternary weights.

ACKNOWLEDGMENT

We thank the members of M-bits research group and the

anonymous reviewers for their suggestions, which helped to

improve the paper. This work was supported in part by the

NSF CAREER-1652294 award, NSF-1763918 award and

Intel gift award.

REFERENCES

[1] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial archi-
tecture for energy-efficient dataflow for convolutional neural
networks,” in Computer Architecture (ISCA), ACM/IEEE 43rd
International Symposium on. IEEE, 2016, pp. 367–379.

[2] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun, and O. Temam, “Dadiannao: A
machine-learning supercomputer,” in Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchi-
tecture. IEEE Computer Society, 2014, pp. 609–622.

[3] N. P. Jouppi, C. Young, N. Patil, D. Patterson et al., “In-
datacenter performance analysis of a tensor processing unit,”
in Proceedings of the 44th Annual International Symposium
on Computer Architecture. ACM, 2017, pp. 1–12.

[4] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar,
“Isaac: A convolutional neural network accelerator with in-
situ analog arithmetic in crossbars,” in Proceedings of the

92

43rd International Symposium on Computer Architecture.
IEEE Press, 2016, pp. 14–26.

[5] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “Prime: A novel processing-in-memory architecture
for neural network computation in reram-based main mem-
ory,” in Proceedings of the 43rd International Symposium on
Computer Architecture. IEEE Press, 2016, pp. 27–39.

[6] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer,
D. Sylvester, D. Blaauw, and R. Das, “Neural cache: Bit-
serial in-cache acceleration of deep neural networks,” in
2018 ACM/IEEE 45th International Symposium on Computer
Architecture (ISCA), 2018, pp. 383–396.

[7] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Advances in
neural information processing systems, 2015, pp. 1135–1143.

[8] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and
S. Mahlke, “Scalpel: Customizing dnn pruning to the underly-
ing hardware parallelism,” in Computer Architecture (ISCA),
2017 ACM/IEEE 44th Annual International Symposium on.
IEEE, 2017, pp. 548–560.

[9] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-
net: Imagenet classification using binary convolutional neural
networks,” in European Conference on Computer Vision.
Springer, 2016, pp. 525–542.

[10] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-
net: Training low bitwidth convolutional neural networks with
low bitwidth gradients,” arXiv preprint arXiv:1606.06160,
2016.

[11] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary
quantization,” arXiv preprint arXiv:1612.01064, 2016.

[12] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy,
D. Blaauw, and R. Das, “Compute caches,” in High Perfor-
mance Computer Architecture (HPCA), 2017 IEEE Interna-
tional Symposium on. IEEE, 2017, pp. 481–492.

[13] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28
nm configurable memory (tcam/bcam/sram) using push-rule
6t bit cell enabling logic-in-memory,” IEEE Journal of Solid-
State Circuits, vol. 51, no. 4, pp. 1009–1021, 2016.

[14] M. Huang, M. Mehalel, R. Arvapalli, and S. He, “An energy
efficient 32-nm 20-mb shared on-die L3 cache for intel R©
xeon R© processor E5 family,” J. Solid-State Circuits, vol. 48,
no. 8, pp. 1954–1962, 2013.

[15] W. Chen, S.-L. Chen, S. Chiu, R. Ganesan, V. Lukka, W. W.
Mar, and S. Rusu, “A 22nm 2.5 mb slice on-die l3 cache for
the next generation xeon R© processor,” in VLSI Technology
(VLSIT), 2013 Symposium on. IEEE, 2013, pp. C132–C133.

[16] W. J. Bowhill, B. A. Stackhouse, N. Nassif, Z. Yang,
A. Raghavan, O. Mendoza, C. Morganti et al., “The xeon R©
processor E5-2600 v3: a 22 nm 18-core product family,” J.
Solid-State Circuits, vol. 51, no. 1, pp. 92–104, 2016.

[17] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkate-
san, B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally,
“Scnn: An accelerator for compressed-sparse convolutional
neural networks,” in Proceedings of 44th International Sym-
posium on Computer Architecture. ACM, 2017, pp. 27–40.

[18] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning
structured sparsity in deep neural networks,” in Advances in
neural information processing systems, 2016, pp. 2074–2082.

[19] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and
C. Le, “Rapl: memory power estimation and capping,” in

Low-Power Electronics and Design, 2010 ACM/IEEE Inter-
national Symposium on. IEEE, 2010, pp. 189–194.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in neural information processing systems, 2012, pp.
1097–1105.

[21] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 2818–2826.

[22] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C.
Berg, and L. Fei-Fei, “Imagenet large scale visual recognition
challenge,” International Journal of Computer Vision, vol.
115, no. 3, pp. 211–252, 2015.

[23] A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr,
“WRPN: Wide reduced-precision networks,” in International
Conference on Learning Representations, 2018. [Online].
Available: https://openreview.net/forum?id=B1ZvaaeAZ

[24] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolu-
tional neural networks,” IEEE Journal of Solid-State Circuits,
vol. 52, no. 1, pp. 127–138, 2017.

[25] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo,
T. Chen, and Y. Chen, “Cambricon-x: An accelerator for
sparse neural networks,” in Microarchitecture (MICRO), 49th
International Symposium on. IEEE, 2016, pp. 1–12.

[26] W. Huang, K. Rajamani, M. R. Stan, and K. Skadron,
“Scaling with design constraints: Predicting the future of big
chips,” IEEE Micro, vol. 31, no. 4, pp. 16–29, 2011.

[27] Micron Technology Inc., “Calculating memory power for
ddr4 sdram,” Tech. Rep. TN-40-07, 2017.

[28] A. Subramaniyan, J. Wang, E. R. Balasubramanian,
D. Blaauw, D. Sylvester, and R. Das, “Cache automaton,”
in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2017, pp. 259–272.

[29] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill,
M. Liu, D. Lo, S. Alkalay, M. Haselman et al., “A con-
figurable cloud-scale dnn processor for real-time ai,” in
Proceedings of the 45th Annual International Symposium on
Computer Architecture. IEEE Press, 2018, pp. 1–14.

[30] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally, “Eie: efficient inference engine on com-
pressed deep neural network,” in Proceedings of the 43rd
International Symposium on Computer Architecture. IEEE
Press, 2016, pp. 243–254.

[31] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger,
and A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep
neural network computing,” in Computer Architecture (ISCA),
2016 ACM/IEEE 43rd Annual International Symposium on.
IEEE, 2016, pp. 1–13.

[32] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and
A. Moshovos, “Stripes: Bit-serial deep neural network com-
puting,” in Microarchitecture (MICRO), the 49th IEEE/ACM
International Symposium on. IEEE, 2016, pp. 1–12.

[33] J. Albericio, A. Delmás, P. Judd, S. Sharify, G. O’Leary,
R. Genov, and A. Moshovos, “Bit-pragmatic deep neural
network computing,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture.
ACM, 2017, pp. 382–394.

93

